Welcome to Systems Security (SysSec)

System Security, Spring 2024 Week 1 Lead Presenter(s): SecDev **Opening Remarks** Featuring Prof. Cleary

Agenda – Week 1

- Welcome
 - Introduction
 - What is System Security
- Class Overview
 - Learning outcomes
 - Course requirements
- Virtualization
 - In class exercise: Login to vCenter
 - In class exercise: Virtualization Activity
- Coursework

- Style guide review
- Workflow
- Reporting
- Topology
- Assignment: Homework 1
 - In class exercise: Launch a new virtual machine (VM) from .iso
- Summary/Wrap-up

Introductions

UB SecDev, Spring 2024

Raymond Harenza (@rwharenz) Ethan Viapiano (@ethanvia) Dikshit Khandelwal (@dikshitkhandelwal) Lauren Moore (@lbmoore) Steffi Yeh (@cyeh4) Austin Chen (@aechen2) Ben Juliano (@bjjulian) Joshua Wajnryb (@jwajnryb) Shreyas Ramesh (@ramesh3)

Overview - What is System Security?

This sets the stage for involvement with the hosting of: Camps Competitions Grantsmanship As: Faculty Students (grad and undergrad) Alumni and volunteers

System Security Introductions

School of Management Faculty Prof. Kevin Cleary (@cleary.kevin.p) Prof. Dominic Sellitto (@dsellitto) Prof. David J. Murray (@djmurray)

Student Volunteers Griffin Refol (@grefol) Vasu Baldwa (@vasudevb) Blake Turner (@blaketnr) Alumni Volunteers Phil Fox (@xphilfox) Anthony Magrene (@magrene) Stephen James (@stephenorjames)

Course Goals: Learn, Have Fun, Be Your Best

Agenda – Week 1

Welcome

- Introduction
- What is System Security
- Class Overview
 - Learning outcomes
 - Course requirements
 - CIATD

Virtualization

- In class exercise: Login to vCenter
- In class exercise: Virtualization Activity
- Coursework
 - Workflow
 - Reporting
 - Topology
 - Assignment: Homework 1
 - In class exercise: Launch a new virtual machine (VM) from .iso
- Summary/Wrap-up

Learning Outcomes of This Class

Learn and apply basic security concepts Identify threats and vulnerabilities of systems Learn to harden systems and address vulnerabilities Specific focus on Windows and Linux Effectively communicate via written reports Documentation (instructional reports) Executive and technical communication (informational reports) Work effectively as a team

Overview - SysSec

Investigating the boundaries and overlaps between:
Information Technology (IT)
Information Systems (IS) Management
Computer Hardware and Software
Everything covered in this class will be directly applicable to:
Homework assignments
In-class activites

Tentative Class Schedule

This schedule is subject to change.

Week	Торіс	Homework		
Week 1	Welcome - 1000-mile overview, vSphere, Virtualization	HW01		
Week 2	Intermediate Networking (virtual lecture to precede)	HW02		
Week 3	Firewalls	HW03		
Week 4	Windows	HW04		
Saturday, Febuary 10th, 202	24: <u>HS Lockdown</u>			
Week 5	Linux	HW05		
Week 6	Windows Threat Hunting	HW06		
Week 7	Services + Hardening	HW07		
Week 8	Secure Coding	HW08		
Week 9	Spring Break			
Week 10	Firewalls 2	HW10		
Week 11	Risk Analysis + Mangement	HW11		
Saturday, March 30th, 2024: Internal Lockdown				
Week 12	TBD Guest Lecture: Tim Mongan			
Week 13	Pen Testing	HW13		
Saturday, April 20th, 2024: Collegiate Lockdown				
Week 14	Network Resiliency HW14 Guest Lecture: Dominic Sellitto			
Week 15	Digital Forensics	Final Project		

Course Requirements

Component	Percentage of overall grade
Attendance and Professionalism	10%
Weekly Projects	65%
Final Project	15%
Competitions (2)	10%
Total	100%

Ground Rules

 Attendance: Taken weekly during lecture time
 Homework: Weekly, deliverables due Thursdays 6:29 pm
 Late Policy: Late submissions are not accepted
 Generative Al

Use of Generative Al

This course allows the use of generative AI tools (e.g., ChatGPT) on certain assignments within given guidelines. Failure to follow these guidelines may be considered a violation of UB's academic integrity policy. If you are unsure how and when generative AI can be used, be sure to ask.

Generative Al tools are best used as idea generation, not as a citable reference. Any use of generative Al tools must be rigorously documented and submitted with your assignment.

Competitions!

Highschool Lockdown February 10th
Contact @aderysh on Mattermost if you are interested
UB Internal Lockdown
March 30th!
Sign up form: Will be provided in Mattermost when available
External Competitions

🚺 <u>Netoef</u>

Mattermost

Go to:

- https://chat.System Security.org/signup_user_complete/?id=j3zqpf4qubb1uppc3a1fob61wr
- Use your UB Email to sign up and use your UBIT ID as your username
- Once logged in look under public channels and press "More..." to join the channel SysSec Spring 2024

Agenda – Week 1

- Welcome
 - Introduction
 - What is System Security
- Class Overview
 - Learning outcomes
 - Course requirements
 - CIATD

Virtualization

- In class exercise: Login to vCenter
- In class exercise: Virtualization Activity
- Coursework

- Workflow
- Reporting
- Topology
- Assignment: Homework 1
 - In class exercise: Launch a new virtual machine (VM) from .iso
- Summary/Wrap-up

System Security Resources

As it turns out, System Security has you *all* covered already.

We have these:

... and all you have to do is drive over to Davis Hall and pick your gear up.

Converging the analog: Virtualization

Instead, we're going to get you the resources you need for this class through virtualization!

Explain Virtualization to your Mom

Remote access to all kinds of different computing solutions
No need for your own hardware *or software*Not even a VirtualBox download (for those of you with experience)!
Effective
UB and program donors foot the bill!
No small expenditure

Virtualization: How do we do that?

A virtual machine is a computer inside a computer.
 A hypervisor lets you interact with virtualized machines!
 VMWare's vSphere presents the hypervisor to you!

	Compatibility:	Ubuntu Linux (64-bit) ESXi 6.5 and later (VM version 13) Not running, version 11260 (Guest N	(anaged)	
1 Powered On	Launch	n Console		×
aunch Web Console aunch Remote Console 🚯	● Web Cor○ VMware	isole Remote Console (VMRC)		
VM Hardware	Rememb	er my choice		
> CPU > Memory			CANCEL	ж
		_		

Guest OSGuest OSGuest OSGuest OSGuest OSHypervisorHypervisorHost OSHost OSHardwareHardwareHardwareTYPE 1 HypervisorTYPE 2 Hypervisor

Use case of virtualization

Type 1 Bare Metal Hypervisors access machine 0 resources directly. (SysSec Version) Type 2 Hosted Hypervisors run on an underlying operating system, and are given resources for guests to use by the host. (Other courses)

Type 2 Virtualization

Intel/AMD Hosts

 Can utilize software like VirtualBox

 Apple Silicon Hosts

 Must utilize ARM ISO's and software such as Qemu or UTM

In Class Activity Login to vCenter

Virtualization: Let's look inside

- Login to VPN if off campus
- Login to vCenter
 - vCenter: <u>https://cdr-vcenter.cse.buffalo.edu/</u>
 - Use YourUBITName@vsphere.local for the login ID
 - You will be sent a message with your login information
 - Course links available at <u>https://System</u>
 - Security.org/courses/syssec/
 - □ Also available on UBLearns!

Break slide

Please return on time!

Agenda – Week 1

- Welcome
 - Introduction
 - What is System Security
- Class Overview
 - Learning outcomes
 - Course requirements
 - CIATD

Virtualization

- In class exercise: Login to vCenter
- In class exercise: Virtualization Activity
- Coursework
 - Workflow
 - Reporting
 - Topology
 - Assignment: Homework 1
 - In class exercise: Launch a new virtual machine (VM) from .iso
- Summary/Wrap-up

SysSec Coursework

Assigned Weekly

Delivery and turn-in via UBLearns (Bright Space)
Required .pdf format uploads

Will not be graded if not in .pdf format

Notes will be posted at <u>https://ubnetdef.org/lectures/</u>
Class work will correspond to the homework

Pay attention in class
Complete the in class activates

SysSec Homework

Reports

Instruction report

- Informational report
- Select weeks: System state

Scored separate of report deliverable

Full credit system state may be required for in class activities

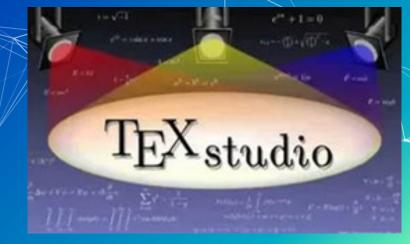
Due the subsequent Thursday, 6:29 pm

Report components

Instructional Reports

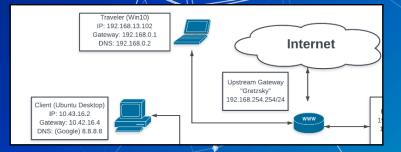
Screenshots technical walk-through
Informational reports
Inform select audiences
Requirements
Written professional report
Topology
Visual network diagram

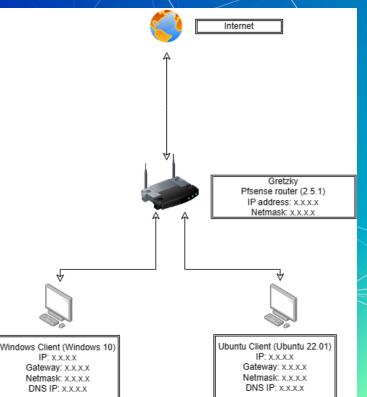
A style guide for each component is in UB Learns


Coursework Support

- Office hours (as posted on the <u>https://System Security.org/courses/syssec</u> course page)
 - General support in the Systems Security Mattermost channel
 - Subject to availability
 - Limited availability on Thursdays before class
 - Consult this resource to improve support timeliness: <u>https://nohello.net/en/</u>
 - Open-Source Research
 - Peer collaboration to achieve system state is acceptable

Homework: LaTeX


Markup language which makes formatting consistent and easy.
 Applicable to any field and future classes.
 TexStudio for Windows, Overleaf for MacOS, Linux has everything.


Common coursework component: Topology

- Topology: A network diagram
 - Requirements
 - Generated
 - Draw.io/diagrams.net (recommended)
 Lucidchart
 - Others that look as or more professional
 - Professional organization of network
 - All devices represented as if physically available
 - Device details correspond exactly to system states

Open up topology style guide and go over it in depth

- Provides layout and general guidelines for topologies
- Key pointers:
 - System information
 - Connection flow
 - Hierarchical system placement

In Class Activity Network Topology Walkthrough

Creating a Network Topology

○ In <u>diagrams.net</u>:

- Open a new diagram
- Click on <u>+ More Shapes</u>
- \bigcirc Select one of the following
 - Clipart, <u>Cisco19</u>, <u>Citrix</u>
- Click on <u>Apply</u>
- Expand your selection from the dropdown list
- O Drag and drop the figures corresponding to their device
- Connect each device with an arrow indicating the flow of network traffic
- Select a <u>Rectangle</u> to label each network device
- See the Topology Style Guide for more details

List of devices to be included on the topology:

Name (network devices)	Operating System	IP
DemoRouter	pfSense 2.7.2	74.110.50.221
interface1		172.16.0.1/26

Name (endpoints)	Operating System	IP	Subnet Mask	DNS	Default Gateway
DemoClientA	Ubuntu 23.10	172.16.0.10	255.255.255.192	8.8.8.8	172.16.0.1
DemoClientB	Windows 10	172.16.0.20	255.255.255.192	8.8.8.8	172.16.0.1

Common coursework component: System State Remedy

- Some assignments are dependent on the completion of others Client 1. Windows 10
 - Deliverables will specify a requisite, gradable "system state."
 - This state can be a "prerequisite" for the next assignment
 - We will provide near-term feedback for remediation.
 - Address remediation instructions seriously!
 - If not remediated, you may not be able to participate in class
 - Seek after-class help.

Homework 1 (HW01)

- Posted to UBLearns by 9:30 pm
- Install two clients from .iso on your network segment/vCenter folder
 - Client 1: Windows 10
 - Client 2: Ubuntu Linux Desktop version 23.10.1
 - All usernames and passwords must match:
 - sysadmin
 - Change.me!
- Perform simple network tests on each using the Command-Line Interface (CLI). Take screenshots!
- System state: Both client installations are complete and are networkconnected.
- Provide a topology of your network

Instructional Report Style Guide Introduction/overview

Provides layout and general guidelines for homework
Key pointers:

Screenshots
Page layout
In-paragraph organization
Punctuation and grammar

Agenda – Week 1

- Welcome
 - Introduction
 - What is System Security
- Class Overview
 - Learning outcomes
 - Course requirements
 - CIATD

Virtualization

- In class exercise: Login to vCenter
- In class exercise: Virtualization Activity
- Coursework

- Workflow
- Reporting
- Topology
- Assignment: Homework 1
 - In class exercise: Launch a new virtual machine (VM) from .iso
- Summary/Wrap-up

Summary and Wrap up

Today's Achievements:

- We met each other
- We learned about what System Security is
- We did some virtualization
 - Accessed vSphere and launched a machine
- We communicated the standards for reporting
- We described the homework process, this week's HW, and course resources

Questions

Now is the time!

In Class Activity Launch a new VM from ISO

Launch a VM from a new .iso

In vCenter:

- A Right click on the VM referenced in the HW
- Click on Edit Settings...
- Scroll down to <u>CD/DVD drive 1</u>
- From the drop down select <u>Datastore ISO File</u>

- Select either a Windows or Linux ISO. Consult HW for the name.
- Click <u>OK</u> and make sure the connected option is checked

Class dismissed See you next week!