
Software Security
UBNetDef, Spring 2024
Week 8

Presenters:
Dikshit Khandelwal [DK]
Ben Juliano

Agenda

▰ Three common vulnerabilities
○ Malformed Inputs
○ Poor implementation
○ Memory Management

▰ Common exploits
○ Web applications
○ Systems

▰ Common software vulnerabilities
○ Shared Libraries (CVEs)
○ Old Libraries

▰ Database security
○ Data minimization

▰ How to find vulnerabilities in code bases
▰ SIEM

What is Software Security
▰ Software security is a set of policies and controls designed to ensure that

programmers design and implement secure applications.
▰ Secure applications are programs that do not break from their intended purpose or

implement measures so that they don't inadvertently reveal any system
information that may be useful for an attacker.

What’s a Software Vulnerability?
▰ A software vulnerability is a security flaw in an application that can be used to do

malicious things to the application or the computer the application is running on.
▰ These vulnerabilities occur when an applications behaves in an unintended way.

Malformed Inputs
▰ A malformed input can occur when a user enters an input into an application that

the application doesn’t know how to handle.
▰ Attackers can leverage malformed inputs to inject a malicious input in a system

to perform some unknown activity.

Malformed Input Attacks
▰ The most well know injection attacks are SQL injections and command injections.

Malformed Input Solutions
▰ The ways of preventing malformed inputs from posing a threat are:

○ Input sanitization
○ Input validation

Input Sanitization
▰ Input is sanitized by modifying or removing any disallowed characters from the

input.
▰ An example is adding a ‘ if there is only one in the text or changing all ‘ to “.
▰ After undergoing sanitization, the data is checked with input validation to confirm

the validity.

Input validation
▰ Input validation is the process of confirming the data is correct.
▰ Input is well formed if it meets a set of criteria.
▰ It test for things such as:

○ Length
○ Formatting
○ Allowed characters

System Misconfiguration
▰ Misconfigured systems are a common driver of vulnerabilities to an organization.
▰ Some common system misconfigurations are:

○ Leaking server-side information
○ Default credentials
○ Setuid binaries
○ Services running with elevated privileges
○ Access controls
○ Systems left in demo/testing mode
○ ……Several more

Default Credentials
▰ Default credentials preconfigured on hardware devices or software applications

by manufacturers or vendors are often left unchanged by users or
administrators, creating a security vulnerability.

▰ Finding default credentials is as easy as searching “[SOFTWARE] default
password”.

Leaking server-side information

▰ Leaking server-side information can have major implications for an attacker.
▰ This information could be used by an attacker to plan out their attack.
▰ Some information that needs to be kept secure is:

○ Operating systems.
○ System/Software version number.
○ Relevant paths.

▰ Why is leaking this information bad?

Leaking server-side information

▰ To mitigate this issue limit error message to show the minimal amount of
information for a user.

▰ Here is an example of a hardened IIS server .

Setuid Binaries

▰ Setuid binaries only exist on Linux machines these types of files allow the user
to run the file with the permissions of the owner.

▰ If root is the owner, then when running the file it will run with root permissions.
▰ These files can allow an unprivileged user to do more than they are normally

allowed to do.
▰ An attacker could target these files and try to escalate their privileges.

Demo/Testing Mode
▰ When a new update is going to be rolled out to an applications developers will

test the updates on the application first.
▰ These demo/test modes normally aren’t configured to have every security

measure implemented leaving them vulnerable to multiple attacks if they are
not properly disposed of after testing.

▰ An attacker could find one of these test environments and pivot off it to get
deeper into a network or escalate their privileges.

Access Controls
▰ Access control enforces policy such that users cannot act outside of their

intended permissions.
▰ Only the authorized users should be allowed to see/use the specific data they

need to complete their work.
▰ Violation of the principle of least privilege or deny by default, where access

should only be granted for particular capabilities, roles, or users, but is available
to anyone.

Services and Executables

▰ Some services will require higher levels of privileges to function properly.
▰ These services poses a major security risk, if a service needs higher privileges to

function compensatory controls will need to be put in place to help protect
against an attack that originates from the service.

▰ With extra controls in place the service still functions as needed, and we reduce
the risk of the service being exploited and dealing a greater amount of damage
because of the privileges it has.

▰ Many services are remotely provisioned.
▰ Local services often interact system level functionality.

Memory Management
▰ Memory management refers to how software developers manage the memory

they use in their applications.
▰ Poor memory management can lead to:

○ Buffer overflows
○ Memory leaks

Memory Management Mitigations
▰ To prevent buffer overflows

○ Stack smashing tools
○ Canary values
○ Safe system and libraries calls
○ Specifying data lengths
○ Address randomization
○ Complier time
○ Error trapping/code hygiene

Memory Management mitigation
▰ To prevent memory leaks developers, need to properly free all the memory

they allocate for a program.
▰ To help developers code can be tested by automated tools that will look for and

flag any memory leaks found in the program.

Please return in 10 minutes

Agenda

▰ Three common vulnerabilities
○ Malformed Inputs
○ System Misconfiguration
○ Memory Management

▰ Common exploits
○ Web applications
○ Systems

▰ Common software vulnerabilities
○ Shared Libraries
○ Old Libraries

▰ Database security
○ Data minimization

▰ How to find vulnerabilities in code bases
▰ SIEM

Web Application Exploits
▰ Some common web application exploits are:

○ Cross site scripting (XSS)
○ SQL injections
○ Cross site forgery request (CSFR)

Cross-site scripting (XSS)

▰ Cross site scripting - occurs when untrusted data is included in a web page
without validation. This can allow attackers to inject malicious code into the
web application and execute it on the client side.

Demo

Cross Site Scripting: Samy Worm

▰ MySpace gave users a lot of freedom to customize their profiles, allowing the use
of HTML code.

▰ Samy Kamkar was a 19 year who used my space he knew how to code and
wanted to see if he could make the site do things it wasn’t supposed to.

▰ First, he found a way to edit his relationship status box to “in a hot relationship.”
the relation ship box had a drop-down menu of inputs the user could select from,
but Samy found away around this.

Cross Site Scripting: Samy Worm
▰ About a month later he decided to write a script that would force everyone who

visited his profile to add him as a friend. The script would also add a line to the
person's profile, under the "my heroes" category: "but most of all, Samy is my
hero."

▰ He also made it so the code would copy to other users profiles once someone
visited a profile the worm had infected they too would add Samy and be infected.

▰ Around midnight on October 4, 2005, in Los Angeles, when Samy Kamkar, then a
19-year-old hacker, released what has come to be known as the "Samy worm,"
perhaps the fastest-spreading computer virus of all time.

SQL Injection
▰ SQL injection is one of the most common web hacking techniques.
▰ SQL injection usually occurs when you ask a user for input, like their

username/userid, and instead of a name/id, the user gives you an SQL statement
that you will unknowingly run on your database.

Demo

SQL Injection: Epic Games
▰ In 2016 Epic games suffered a breach that impacted 800,000 accounts due to

SQL injections.
▰ The compromise occurred from Unreal Engine and Unreal Tournament forms.
▰ Attackers leveraged a SQL injection vulnerability in outdated vBulletin forum

software the company used and were able to dump the entire database.

Cross Site Forgery Request (CSFR)
▰ Cross-Site Request Forgery is an attack

that forces an end user to execute
unwanted actions on a web application
in which they’re currently authenticated.

Cross Site Forgery Request: Glass door
▰ In 2020 a bug bounty hunter was inspecting glass door a website for job seekers

and posting anonymous reviews.
▰ The vulnerability allowed attackers to hijack accounts from logged in victims and

create new admin accounts or employer accounts.
▰ An attacker could delete information on job seekers and employers as well as

creating admin accounts on the site.
▰ When the security team investigated, they found that the tokens did trigger and

exception but didn’t fail and in turn logged the exception and allowed the operation
to continue.

System Exploits
▰ Some common web application exploits are:

○ Buffer overflow
○ Setuid
○ Path attacks
○ Library injection

Buffer Overflow

▰ A buffer overflow occurs when the volume of data exceeds
the storage capacity of a memory buffer

▰ Ex.) If a buffer is of size 8 and the data stored into the
buffer is 10 there would be a buffer overflow

Demo

Path Traversal
▰ Path traversal attacks can be performed by automated tools that will try to go to

different files on a webserver.
▰ An attacker can find hidden files on a webserver through these attacks possibly

finding a vulnerable page.
▰ The attacker can then exploit this vulnerable page to get further access to the

web server.

Library injection
▰ An attacker can infect reusable libraries and inject them to different applications,

altering the behavior without having to modify the source code.
▰ An example is replacing existing code with your own implementations (e.g.

replace a function that should give random numbers).
▰ By injecting malicious libraries an attacker can create functions named the same

as ones being used to manipulate the existing code.

Agenda

▰ Three common vulnerabilities
○ Malformed Inputs
○ System Misconfiguration
○ Memory Management

▰ Common exploits
○ Web applications
○ Systems

▰ Common software vulnerabilities
○ Shared Libraries
○ Old Libraries

▰ Database security
○ Data minimization

▰ Firmware Code
▰ How to find vulnerabilities in code bases
▰ SIEM

Shared Libraries
▰ Shared libraries are files that contain executable code to be used by

multiple applications
▰ Most of these shared libraries also call other shared libraries inside their

code, a lot of code relies on other code creating a lot of points for failure
▰ Examples are

○ Import in python
○ Include in C

Shared Libraries: Log4j
▰ Log4j is an open-source logging library used by millions of computers worldwide.
▰ At the end of 2021, a major vulnerability was found in the library that attackers could

leverage to break into systems, and steal data
▰ The vulnerability granted an attacker total control over a device running the

unpatched version of log4j
▰ CISA release a repo on GitHub tracking

all the products affected by Log4j repo

https://github.com/cisagov/log4j-affected-db

Shared Libraries: OpenSSL Heartbleed
▰ OpenSSL is a free library that anyone can use, it helps to encrypt data sent over

web applications.
▰ Session management is a key component of secure web applications, there is a

need to know when to end the session
▰ Should we end it every 3hrs, 10hrs, or 24hrs? This is a hard question to answer.
▰ The SSL standard includes a heartbeat option, which allows a computer at one

end of an SSL connection to send a short message to verify that the other
computer is still online and get a response back which keeps the session alive.

Shared Libraries: OpenSSL Heartbleed
▰ The vulnerability was discovered in April of 2014 and involved the heartbeat

function to check if the session was still in use.
▰ An attacker could send a small string to the server but would change the length

value to be much larger than it was.
▰ This causes a buffer overflow to happen on the webserver which could return

valuable information to the attacker.
▰ Some of the major companies that were affected included Tumblr, Google, Yahoo,

Intuit (TurboTax), Dropbox, Netflix, and Facebook.

Shared Libraries: OpenSSL Heartbleed

Old Libraries
▰ PyCrypto is an old vulnerable library with hashing

functions.
▰ This library is no longer being maintained the hashing

functions used in it are brute forceable at this point.
▰ The two options for a company that use an old library are:
1. Move on to a new library that is still being maintain by the

developers.
2. Start maintaining the library own their own.

Agenda

▰ Three common vulnerabilities
○ Malformed Inputs
○ System Misconfiguration
○ Memory Management

▰ Common exploits
○ Web applications
○ Systems

▰ Common software vulnerabilities
○ Shared Libraries
○ Old Libraries

▰ Database security
○ Data minimization

▰ How to find vulnerabilities in code bases
▰ SIEM

Database Security
▰ Application should use the lowest possible level of privilege when accessing the

database.
▰ Disable all default accounts that aren’t required.
▰ Remove all unnecessary database functionality, install the minimum required

features.
○ Including any unnecessary vendor content

▰ Use prepared statements

Data Minimization

▰ Data minimization is a policy of only collecting information that is
needed

▰ This should be implemented across all applicable processes
▰ Benefits include:

○ Reduces risk exposure
○ Reduces storage cost

Please return in 10 minutes

Agenda

▰ Three common vulnerabilities
○ Malformed Inputs
○ System Misconfiguration
○ Memory Management

▰ Common exploits
○ Web applications
○ Systems

▰ Common software vulnerabilities
○ Shared Libraries
○ Old Libraries

▰ Database security
○ Data minimization

▰ How to find vulnerabilities in code bases
▰ SIEM

Testing Agenda
• Types of Testing
• Code Scanning
• What is Git?
• Git Requests

Types of Testing

Analysis without running the code Analysis while running the code
with inputs and expecting
resulting outputs

Static Testing
• Analyzing source code without executing the program
• Manual Static Testing:

• Inspections
• Walkthroughs
• Technical Reviews

• Automatic Static Testing
• Control Flow Analysis
• Data Flow Analysis
• Failure Detection

• Beneficial because lots of time can be saved if defects
are detected early on rather than during the later testing
process

Examples of Automated
Static Testing
• Veracode

• Standalone Application
• CI/CD Integration

• SonarQube
• Standalone Application
• CI/CD Integration

Dynamic Testing
• Testing code by running the program and providing

inputs to then verify
• Setting up simple test cases that meet basic

requirements
• Fuzzing – Entering in random incorrect data until

something goes wrong
• Re-running test cases over and over to ensure reliability

• Tests may be executed in a random sequence to
ensure they are not influenced by the system's state.

• Very beneficial to find defects with quality testing in real-
world environments

Examples of Automated
Dynamic Testing
• Astra PenTest

• Used with testing:
• Web and Mobile Applications, Cloud

Infrastructure, API, and Networks
• Standalone Application and CI/CD integration

• OWASP Zap
• Used with testing:

• Web application security testing, network ports,
and API testing

• Standalone Application and CI/CD integration

What is Git?
Git is a distributed version control system

that tracks changes in any set of computer
files

Used in organizations to have multiple
software engineers be able to work on the
same files

Examples:
GitHub
GitLab
Azure DevOps (Newly Popular)

Version Control
How does it work?

Types of Requests
Clone: A method used to create a local copy of a specified repository

Pull: The process of receiving any new code changes on a branch repository

Push: The process of sending new code changes to a branch repository

Merge: The process of combining one branch with another

Fork: A copy of an existing repository in which the new owner disconnects the
codebase from previous committers

Agenda

▰ Common software vulnerabilities
○ Shared Libraries (CVEs)
○ Old Libraries

▰ Three common vulnerabilities
○ Malformed Inputs
○ Poor implementation
○ Memory Management

▰ Understanding the root cause of common vulnerabilities.
▰ Common exploits

○ Web applications
○ Systems

▰ Database security
○ Data minimization

▰ How to find vulnerabilities in code bases
▰ SIEM

What is a SIEM?

▰ Security Information and Event Management
(SIEM)

▰ Used to identify, analyze, and respond to
security threats

▰ They pull data from devices, servers,
applications

Why use a SIEM?
▰ Compliance and reporting
▰ Centralization
▰ Search and reporting
▰ Event correlation
▰ Threat intelligence
▰ Incident response

Some popular “SIEMs”:

…many more

Components of a SIEM
▰ All SIEM implementations generally have 3 components

○ This may vary slightly or have different naming schemes on different SIEM
brands; however, the general roles remain the same

○ Forwarder (sometimes referred to as an agent)
■ These exist on endpoints and forward data to indexers

○ Indexer (sometimes referred to as a server)
■ Collect, process, store, and query data received from agents

○ Dashboard
■ A web server and graphical user interface used to interact with SIEM

implementation

Homework
▰ You will be configuring a Wazuh SIEM to digest logs on

your network
▰ This Wazuh SIEM will have every component of the SIEM

installed on the same device
○ This implementation will also require agents to be

installed on most endpoints on your network

	Software Security
	Agenda
	What is Software Security
	What’s a Software Vulnerability?
	Malformed Inputs
	Malformed Input Attacks
	Malformed Input Solutions
	Input Sanitization
	Input validation
	System Misconfiguration
	Default Credentials
	Leaking server-side information
	Leaking server-side information
	Setuid Binaries
	Demo/Testing Mode
	Access Controls
	Services and Executables
	Memory Management
	Memory Management Mitigations
	Memory Management mitigation
	
	Agenda
	Web Application Exploits
	Cross-site scripting (XSS)
	Demo
	Cross Site Scripting: Samy Worm
	Cross Site Scripting: Samy Worm
	SQL Injection
	Demo
	SQL Injection: Epic Games
	Cross Site Forgery Request (CSFR)
	Cross Site Forgery Request: Glass door
	System Exploits
	Buffer Overflow
	Demo
	Path Traversal
	Library injection
	Agenda
	Shared Libraries
	Shared Libraries: Log4j
	Shared Libraries: OpenSSL Heartbleed
	Shared Libraries: OpenSSL Heartbleed
	Shared Libraries: OpenSSL Heartbleed
	Old Libraries
	Agenda
	Database Security
	Data Minimization
	
	Agenda
	Testing Agenda
	Types of Testing
	Static Testing
	Examples of Automated Static Testing
	Dynamic Testing
	Examples of Automated Dynamic Testing
	Slide Number 72
	What is Git?
	Version Control
	Types of Requests
	Slide Number 76
	Agenda
	What is a SIEM?
	Why use a SIEM?
	Some popular “SIEMs”:
	Components of a SIEM
	Homework

