
Linux
UBNetDef Spring 2024

What is Linux?
▰ You may have heard of Linux being talked about by upper level CS grads in the

context of “kernel space memory management”.
▰ It’s not that complicated.

What is a Linux?
▰ Specifically: Linux is a kernel, the bit of software that communicates between the

hardware and the operating system.
▰ It’s found everywhere.

○ Operating systems
○ Embedded devices
○ Supercomputers
○ My car (used to) runs linux.

▰ More generally: Linux is a group of operating systems (called “distributions”)that all
use the linux kernel.

Distributions
▰ There are countless different distributions (shortened to “distros”)
▰ 2 major families:

○ Debian based
■ Includes Debian, Ubuntu, Kali, Mint, Pop

○ Red Hat based
■ Includes Red Hat, Fedora, CentOS, Rocky

▰ Other distributions include:
○ RedstarOS (붉은별)
○ Arch
○ OpenSuse
○ Gentoo
○ Feel free to ask SecDev what they use!

The Terminal
▰ Another way to interact with your system.
▰ Most GUI activity can be done here faster.

○ Anything that can be done in the GUI can be done here.*
▰ When have we used a terminal in class?
▰ Why might we not want a GUI based system?

*within reason

The Terminal
▰ Running without a GUI (headless) mean systems can be more lightweight.
▰ There are several common command line interpreters, or shells.

○ bash, zsh, sh, csh, fish, (and many more)
▰ Typically, you will see a prompt in your shell that gives you some information about

your current session, often including your current directory.
○ You can customize your prompt via a configuration file (such as ~/.bashrc).
○ Different systems will have different prompts.

“Command Line” “CLI”

“Shell” “Bash”

“Terminal”

“Hacking Window”

Hostname Current Directory Type HereUser

Terminology
▰ POSIX

○ US Government standard from 1988 that set a basis for different shells
and software (now maintained by IEEE).

▰ UNIX
○ Family of operating systems that include Linux, MacOS, BSD.

▰ *NIX
○ Shorthand to say “unix-like”. A system that behaves similarly to a UNIX

system but doesn’t meet all the requirements.
▰ BSD

○ A group of operating systems from UC Berkeley that all share the same
kernel.

○ Conceptually similar to Linux, but very different under the hood.

▰ vasu: The username of the current user logged in.
▰ nostradamus: The hostname of the machine.

Terminal

▰ ~/Documents/IRSeC: Current location.

Terminal

Terminal
▰ $: The prompt symbol.
▰ Denotes the end of the command prompt.

○ User’s keyboard input will appear next.

Commands
▰ ls: A command

○ An instruction given by a user invoking a program.

Commands
▰ -al: A flag

○ A way to set options and pass in arguments to the commands
you run.

○ Commands change their behavior based on what flags are set.

Commands
▰ 2023/: An argument

○ File name referenced

Commands? Memorization?
▰ Look it up. It’s what I do, it’s what Ken Smith does, it’s what everyone does.

○ Best way to learn/troubleshoot anything linux related
▰ This lecture covers ~20/30 of the most important/useful commands

Man pages
▰ If you’re stuck and the suffix --help isn’t

helping, use the prefix man
▰ Fully detailed description of what each

command suffix does.
▰ man - Manual

▰ Many shells use tab to autocomplete or suggest
autocompletion

▰ This is so useful it gets its own slide

Tab Tab Tab Tab Tab Tab Tab Tab Tab Tab Tab...

What am I?
▰ Now that we’ve opened up the terminal, we can start to get our bearings on the

system
▰ whoami : Current user
▰ pwd : Where you are
▰ hostname : Name of system you are on
▰ ip a : What is your network information
▰ ps -aux : What is running
▰ clear : clears the screen

What am I?
▰ Now that we’ve opened up the terminal, we can start to get our bearings on the

system
▰ whoami

What am I?
▰ Now that we’ve opened up the terminal, we can start to get our bearings on the

system
▰ pwd : Print Working Directory

What am I?
▰ Now that we’ve opened up the terminal, we can start to get our bearings on the

system
▰ hostname : Name of system you are on

What am I?
▰ Now that we’ve opened up the terminal, we can start to get our bearings on the

system
▰ ip a : What is your network information

What am I?
▰ Now that we’ve opened up the terminal, we can start to get our bearings on the

system
▰ ps -aux : process status

○ Shows (a)ll the processes
○ With (u)sernames
○ Including those not started from the terminal (x)

What am I?
▰ Now that we’ve opened up the terminal, we can start to get our bearings on the

system
▰ clear : clears the screen

○ Does not clear the history

Questions (Question mark)

Demo!

Understanding the filesystem
▰ Everything is built of the root or / directory
▰ Everything is a file

Linux File Hierarchy System
▰ The linux file system is complicated. [1], [2], [3], [4].
▰ Different sites will configure systems based on:

○ Historical reasons
○ Business requirements
○ The system admin

▰ Different distributions will implement some aspects differently. [5], [6], [7], [8].
▰ This lecture provides a high level overview.

https://unix.stackexchange.com/questions/679569/what-is-the-difference-between-lib-and-usr-lib-and-var-lib
https://www.blackmoreops.com/2015/06/18/linux-file-system-hierarchy-v2-0/
https://whimsical.com/fhs-L6iL5t8kBtCFzAQywZyP4X
https://askubuntu.com/questions/308045/differences-between-bin-sbin-usr-bin-usr-sbin-usr-local-bin-usr-local
https://www.freedesktop.org/wiki/Software/systemd/TheCaseForTheUsrMerge/
https://unix.stackexchange.com/questions/227577/what-are-the-alternatives-to-the-fhs
https://askubuntu.com/questions/722968/why-should-i-move-everything-into-opt
https://unix.stackexchange.com/questions/11544/what-is-the-difference-between-opt-and-usr-local

▰ / (root) root directory of the entire system hierarchy.
○ Everything starts at root.
○ Nothing is higher than root.

▰ /bin/ essential command binaries
○ whoami, pwd, cp are all stored here.

▰ /sbin/ essential binaries that need superuser permissions (not pictured)
○ grub, fsck, mount etc.

Image Dump (skip)

▰ /usr/ user level binaries and applications
○ LaTeX, Firefox, vscode etc.
○ Individual libraries for those programs (ex. PyQt-5).
○ Can be shared across networks.

▰ /etc/ host specific system-wide configuration files
○ We edited the network configuration file in here for HW02.
○ Occasional miscellaneous files are also stored here.

▰ /home/ Users' home directories, containing saved files, personal settings, etc.

▰ /opt/ Additional software and addons.
○ Oftentimes this is software not installed by the default package managers.

▰ /tmp/ Temporary files like cache and downloaded files.
○ Typically not saved after reboots
○ World writable!

▰ /var/ Variable files - content of the file is expected to continually change during
normal operation of the system
○ System logs are stored here

Linux FHS
▰ There are more key paths on the filesystem that we haven’t covered
▰ These are specified in the Filesystem Hierarchy Standard (FHS)
▰ You can access that information from your terminal with man hier
▰ https://refspecs.linuxfoundation.org/fhs.shtml

https://refspecs.linuxfoundation.org/fhs.shtml

Questions (Question mark)

How do we navigate the file
system?

Navigating Directories
▰ cd - change directory: changes working directory

○ Usage: cd <relative/absolute path>
▰ ls - list files in a directory: shows files in a given directory

○ Files or directories that start with "." are hidden.
○ ls -a : shows hidden files and directories

Relative vs Absolute Paths
▰ Relative Locations

○ ~ Current user’s “home” directory (shortcut)
○ . The current directory
○ .. The parent to your current directory
○ - The last directory you went to

▰ File Paths can be defined from your current directory (relative), or from the root
directory(absolute).

Demo!

Interacting with files
▰ cat

○ Syntax: cat <filename>
○ Displays the contents of the file in the terminal.

Interacting with files
▰ less

○ Syntax: less <filename>
○ Provides a scrollable version of cat

▰ touch
○ Syntax: touch <filename>
○ Creates an empty file with the filename provided

▰ wc: Word Count
○ Syntax: wc <filename>
○ Counts the number of lines, words and bytes in each file

▰ file
○ Syntax: file <filename>
○ Provides metadata about each file

Interacting with files
▰ cp: Copy

○ Syntax: cp </path/to/source> </path/to/destination>
▰ mv: Move

○ Syntax: mv </path/to/source> </path/to/destination>
○ You can use this to rename files as well.

▰ rm: remove
○ Syntax: rm <filename>
○ Deletes the file for good. No recovery.

▰ mkdir: Make Directory
○ Syntax: mkdir <folder name>

▰ Syntax is <text editor name> <file> for anything

Editors
▰ vim - Very powerful editor with an unconventional workflow, can be hard for beginners

○ There are many good tutorials
○ Often times the default text editor

▰ nano - Pretty standard text editor, easier to use
○ Arrow keys to move and you can type, ctrl + x to exit and save

▰ emacs / gedit - Use the built in GUI text editor
○ Just like good ol’ notepad
○ Emacs does have a CLI interface

▰ Other editors of choice can be installed. (micro, pico, kilo)

Text Editors

https://www.openvim.com/

find
▰ Find is very powerful, useful, and complex for finding files.
▰ It’s a CLI search function essentially.
▰ Basic syntax:

○ find <search directory> <options>
○ -name <name> or -iname <name> (case insensitive)

■ supports wildcards such as “hello*” which might match
“hello_world.txt”

○ -type <x> : where <x> is either (f)ile, (l)ink, (d)irectory, (c)haracter
device or (b)lock device

○ -user <username> : for files owned by <username>
○ -perm <###> for files with <###> permissions
○ -mmin -<n> for files edited in the last <n> minutes

grep
▰ grep is also a really powerful tool for searching inside files.

○ grep <pattern> <file>
▰ It uses the power of regular expressions (regex) to do its magic.
▰ Find text in large files.

■ Log files...?
○ Filter unwanted text away.

CTF part 1
You have a VM called LinuxCTF. There are hidden files on it. You need to use the
commands we just learned to find them. The VM login is ctfuser:dappergoose23

In your VM, go to linuxctf.org and login with teamXX as your username and
password.

Replace XX with your two digit team number.

Remember Google is your friend, if you don’t know how to do something try searching
“How do I _________ in linux?”
Do the questions in order! You won’t see the next one unless you complete the one
before!

CTF Part 1 Discussion and
Review

Let’s talk (file) permissions

File permissions
▰ Files owned by user and group.
▰ File modes are read/write/execute.
▰ Mode permissions granted to

○ owner, owning group, everyone

▰ Modifying
○ See permissions with ls -l command.
○ Set modes with chmod command.
○ Set owners with chown command.
○ https://chmod-calculator.com/

https://chmod-calculator.com/

Reading a Permission Entry
▰ <type flag> <owner permissions> <group permissions> <world permissions>
▰ Default permissions = 644

○ Read and write for owner.
○ Read for group and the world.

▰ What is 755?
▰ What about 245?

chmod
▰ chmod = change file mode bits
▰ change file permissions
▰ chmod <permission> <filename>

○ Allow a file to be executable: chmod +x myFile
○ Grant all permissions to a file: chmod 777 myFile

Questions (Question mark)

Users and Groups

Users and Groups
▰ Linux systems have many users

○ One user per service
○ Stored in /etc/passwd

▰ Linux systems also have groups
○ Stored in /etc/group

▰ Every user has a User Identification number (UID)
▰ Groups also have unique Group Identification numbers (GIDs)
▰ The root user has a UID of 0

○ Root can do anything

▰ Notice the x instead of the password?
▰ The presence of a shell determines whether or not a user can login.

○ /bin/false/ and /sbin/nologin are often used as “dummy” shells to prevent
accounts from logging in.

/etc/passwd

/etc/shadow

▰ Encrypted passwords formally stored in /etc/passwd
▰ Now stored in /etc/shadow which is only readable by root

▰ useradd: Add a user to the system
○ Syntax: useradd -c “<comment>” -m (create homdir) -s

<shell> -g <primary group> -G <other groups>
<username>

○ Need to create password with passwd <username>
○ This is complicated and sucky

▰ adduser is interactive!
○ It is a wrapper around useradd
○ Handles creating the home directory, shell, password, etc
○ Not available on all systems
○ Syntax: adduser <username>

Adding users

userdel and deluser

▰ userdel and deluser delete the user
▰ Like useradd and adduser, deluser is a wrapper around userdel

▰ Syntax: deluser <username>
○ The -r flag will also delete the user’s home directory

Administrative Right and Users

▰ The root user has full access to every part of the system
▰ Other users can access “root permissions” with the sudo command
▰ sudo: super user do

○ Syntax: sudo <command>
○ This will run the command with sudo permissions
○ To use sudo you must be in the sudo group

▰ Limit others users sudo access by editing the sudoers file
○ This is a special file, and must be edited with the visudo command

Administrative Right and Users
▰ You can switch users with su
▰ su: switch user

○ Syntax: su <username>
○ Typing su without a username will switch you into the root user

Fun fact about sudo:

Groups!
▰ Group name
▰ Password (usually unused)
▰ GID (Group ID)
▰ List of accounts which belong to the group
▰ All groups found in /etc/group
▰ Like security groups in Windows, Linux groups can also be used to grant users

different privileges.

Fun with groups!
▰ groupadd and groupdel add/delete groups

○ Syntax: groupadd <group name>
○ Syntax: groupdel <group name>

▰ usermod lets you add/remove users to a group
○ Syntax: usermod -G <Group> <username>

▰ getent will let you see which users are part of a group
○ Syntax: getent group <groupname>

Package managers
▰ Used to install, uninstall, update and upgrade packages.
▰ Each distro has its own version

○ apt - Ubuntu, and Debian based
○ yum - CentOS and other Red Hat Enterprise

▰ To install a new package:
○ sudo <package manager> install <package name>

Update != Upgrade
▰ Update does not update your system!

○ It updates sources which keep track of new packages
▰ Upgrades actually downloads the new stuff
▰ Run update before upgrade

Remote connections (ssh)
▰ SSH is the most popular way of accessing and managing Linux systems

remotely.
▰ Usage: ssh username@remote-host

○ E.g., ssh vasu@45.62.216.89
○ ssh admin@butterflylabs.xyz

▰ SSH can use public/private keys instead of/in conjunction with password
based authentication.

▰ Check out ssh-keygen and the man pages/google.

▰ scp is used to transfer files to and from remote computers.
▰ Usage:

scp /path/to/file username@remote-host:/path/to/file
○ E.g., scp access.log vasu@45.62.216.89:~/log.txt

▰ scp uses ssh behind the scenes.
○ Needs ssh access to work.
○ SSH config will carry over.

Copying remote files (scp)

Services
▰ Services on Linux on are managed by the systemd service

○ Not all distros use systemd, but most major ones do.
▰ systemctl <command> <service name>

○ status
○ enable/disable
○ start/stop

▰ When have you used systemctl before?

Environment variables
▰ Environment variables are a way to store information in a shell
▰ They can be set for the duration of a shell session with the export command

○ Syntax: NEW_ENV=something
○ Syntax: export NEW_ENV=something

▰ Environment variables can be put in shell configs and run every time a shell starts
▰ You can check the value of an environment variable with the echo command

○ echo $NEW_ENV would return “something”

▰ Aliases are a great way to reduce repetitive and/or long commands
○ Because who doesn’t like being lazy?

▰ The syntax is easy: alias word='long command'
○ Example: alias errorlog='cat /var/log/system.log |

grep error'
▰ To see a list of all currently set aliases, just type alias
▰ To unset an alias, type unalias <X> where <X> is the alias you want to unset

Aliases

Pipes and redirecting things
▰ Redirect output to fIles

○ command > outputfile.txt (This will overwrite the file)
○ command >> outfile.txt (This will append to the file)

▰ Input file contents
○ command < inputfile.txt

▰ Pipe
○ command | command2

■ cat log.txt | grep “success” | less

Previous Commands
▰ history : Show your history on shells that keep track

○ history -c to clear your history
▰ Ctrl + R : Search command history
▰ !! : Rerun previous command
▰ sudo !! : Rerun as superuser (you will do this a lot)
▰ <Up Arrow> : Cycle through previous commands

CTF part 2
You have a VM called LinuxCTF. There are hidden files on it. You need to use the
commands we just learned to find them.

Remember Google is your friend, if you don’t know how to do something try searching
“How do I _________ in linux?”

In your VM, go to linuxctf.org and login with teamXX as your username and
password.

Replace XX with your two digit team number.
Do the questions in order! You won’t see the next one unless you complete the one
before!

CTF Part 2 Discussion and
Review

Linux Threat Hunting 101

Disclaimer
Threat hunting isn’t often done with a single
system and usually uses specialized
tools/software. This is an intro.

The best bet is to remember the unix
philosophy and (ab)use filter tools like
grep/head/tail etc.

cronjobs
▰ Cronjobs are tasks that happen at scheduled times
▰ Defined per user.
▰ crontab -e

○ Edit the crontab file or create one if it doesn’t already exist.
▰ crontab -l

○ Displaying the content of crontab file.
▰ crontab -r

○ Remove the entire crontab file.
▰ https://crontab.guru/

https://crontab.guru/

.bashrc
▰ Script that runs whenever an interactive shell session is started (login via ssh,

open a terminal)
▰ Often used to set aliases, and shell specific configurations
▰ Different shells have their own startup files

○ zsh - .zshrc
○ fish - config.fish

▰ /etc/profile is a system wide default script.

User Audits
▰ lastlog - Show the most recent logins.
▰ last - Show last logged in users.
▰ who - Show who is logged on.
▰ w - Show who is logged on and what they are doing.
▰ cat /etc/passwd | grep -v nologin
▰ Look at your sudoers file!

○ cat /etc/group | grep sudo

Logs
▰ cat /var/log/messages

○ Show system messages.
▰ cat /var/log/auth.log

○ Show user authentication logs.
▰ cat /var/log/secure

○ Show authentication log for Red Hat based systems.
▰ cat /var/log/boot.log

○ Show system boot log.
▰ cat /var/log/kern.log

○ Show kernel log.

Permissions (pt 2).
▰ Extended Attributes

○ lsattr and chattr
○ Append only, immutable, etc
○ Supported on most filesystems (but not all!)

▰ SUID/setuid
○ Run this program as the user who owns it, instead of the user who starts it.
○ setgid - run as the group owner

■ find / -user root \(-perm -4000 -o -perm -2000
\)

▰ Three types of UIDs:
○ UID - Standard UID
○ Effective UID - what permissions are actually in place
○ Saved UID - used for recovering dropped permissions

Process Auditing
▰ top/htop

○ Shows a list of processes in real time with their resource usage.
○ Similar to task manager
○ htop is a newer interactive version of top.
○ Other variants also exist (glances, nmon) chose the one that works best

for you!
▰ ps aux

○ Review Slide #22
▰ pstree

○ Shows a tree like view of where a service came from.
○ Useful from tracking down what spawned a process.

Process Auditing
▰ pgrep [options] [pattern]

○ Literally stands for (p)rocess grep.
○ Search for processes by name/pattern
○ pgrep -l -u root

■ Displays the names and PIDs of all processes owned by root
▰ pkill [options] [pattern]

○ Same as above, but for killing process.
○ pkill -u jim

■ Kills all processes owned by jim
▰ kill -9 [processID]

○ Bypasses the standard shutdown routine and kills process at the kernel
level.

○ If this fails, your OS likely has failed.

▰ “Everything in Linux is a file”
▰ /proc is a filesystem that exposes running processes, connections, hardware info

etc. like files.
▰ Command line utilities parse the files inside these files and directories.

○ ps: /proc/
○ route: /proc/net/route
○ arp: /proc/net/arp
○ uptime: /proc/uptime

/proc Filesysem

/proc Filesysem
▰ /proc/<n>/cmdline

○ arguments passed to the program
▰ /proc/<n>/environ

○ process environment variables
▰ /proc/<n>/fd/{0, 1, 2, etc}

○ stdin, stdout, stderr and other open file descriptors
▰ /proc/<n>/(numa_)maps

○ memory maps of the process
▰ /proc/<n>/limits

○ process limits

▰ ss
○ Used to view socket information
○ ss -tlpn is a common flag. Shows all listening TCP sockets and what

process is using them.
▰ lsof

○ Lists all open files, and what process they are associated with.
○ lsof -i

■ Show all internet files (i.e network connections)
○ lsof -i -a -c ssh

■ Filter by a particular process
▰ Other specialized tooling like wireshark/tcpdump.

Host Network Monitoring

▰ tcpdump
○ CLI network monitoring tool.

▰ Wireshark
○ Tool to analyze network records. GUI based.

▰ ntop
○ Like top/htop but for networks.

Host Network Monitoring

▰ Local firewalls exist!
▰ Most common one is IPTables.

○ Kinda complicated
▰ Use ufw(debian)/firewalld(rhel) instead!

○ Example setup to allow incoming SSH
■ ufw default deny incoming
■ ufw default allow outgoing
■ ufw allow ssh
■ ufw enable
■ ufw reload

▰ Automatically persists on reboot

Local Firewalls

Services (pt 2).
▰ All services are defined by a service file

○ Usually inside /etc/systemd/system
○ Define a Service

■ Metadata
■ Dependencies
■ Start parameters

▰ systemctl list-unit-files | grep enabled
○ Look at all enabled services

Effective Filtering and Piping
▰ A lot of commands return lots of text output.

○ Linux utilities are designed to process text
▰ Common tricks include piping into sort or grep
▰ Other tools like cut, awk, xargs

○ Practice!
○ cut -d ' ' -f3 access.log | cut -d ':' -f1 | sort |

uniq -c | sort -n | tail -n 10
■ The shell allows you to build your filters interactively!

▰ RKHunter
○ Scans for rootkits, backdoors and possible local exploits.
○ Compares SHA-1 hashes of important files with known good ones.

▰ Lynis
○ Full linux audit tool.
○ Automatically determines and wraps around preexisting tools.

▰ BusyBox
○ Precompiled single binary that replaces a lot of common linux binaries.

Tools I like

Demo!

Questions (Question mark)

CTF part 3 - Hacked!
You have a VM called LinuxCTF. There are hidden files on it. You need to use the
commands we just learned to find them.

Remember Google is your friend, if you don’t know how to do something try searching
“How do I _________ in linux?”

In your VM, go to linuxctf.org and login with teamXX as your username and
password.

Replace XX with your two digit team number.

CTF Part 3 Discussion and
Review

That’s all folks
Vasu will probably be in Ben/Ray’s OH next week!

If you want to talk more about Linux, just message me, or
swing by an OH

