
Secure Coding
UBNetDef, Fall 2023
Week 15

Presenters:
Dikshit Khandelwal [DK]
Kyle Lemma

What is secure coding?
• Secure coding is the practice of writing code for systems, applications, and

web services in such a way as to ensure the confidentiality, integrity, and
availability of information and services.

• It's a proactive approach to ensure software is built to be as impervious to
attacks as possible.

Importance of Secure Coding

Confidentiality: Secure coding is fundamental in
maintaining confidentiality. It involves implementing

security measures in software to protect sensitive data
from unauthorized access and breaches. Encryption,

access controls, and secure authentication
mechanisms are key examples.

Integrity: It ensures the integrity of data by preventing
unauthorized modifications. Secure coding practices

like input validation, error handling, and secure
database interactions safeguard data accuracy and

consistency.

Availability: Secure coding also contributes to the
availability of systems and data. By mitigating risks

like denial-of-service attacks and ensuring robust error
handling, it helps maintain reliable access to

resources when needed.

▰ It is the practice of writing software in a way that guards against the introduction
of vulnerabilities and protects against exploitation by malicious actors.

Principles of Secure Coding
▰ Principles of Secure Coding are fundamental rules and

practices that software developers follow to make sure
their software is safe from security threats and attacks.

▰ These principles include things like checking user input,
protecting data, and controlling who can access the
software.

▰ They help create software that is less likely to be hacked or
have security problems.

1. Input Validation
▰ Input validation is the practice of checking and validating all user inputs to

ensure they meet expected criteria.
▰ It prevents malicious inputs that can exploit vulnerabilities like SQL Injection,

Cross-Site Scripting (XSS), and command injection.

Input Validation Importance
▰ Prevent Attacks: Input validation stops attackers from injecting harmful data

into your application.
▰ Data Integrity: It ensures that the data your application processes is safe

2. Output Encoding
▰ Output encoding ensures that data sent to users is safe and can't be used for

malicious purposes. It prevents attackers from injecting harmful content like XSS
attacks.

Output Encoding Importance:
▰ Prevent XSS: Output encoding safeguards your application against Cross-Site

Scripting (XSS) attacks.
▰ Protect Users: It ensures that user-generated content is displayed safely.

3. Authentication
▰ In secure coding, authentication involves writing code that accurately verifies

user identities. The code written to handle user logins, session management,
and identity verification must be secure against various attack vectors.

▰ https://www-student.cse.buffalo.edu/CSE442-542/2023-Fall/cse-442e/#/

https://www-student.cse.buffalo.edu/CSE442-542/2023-Fall/cse-442e/#/

Authentication Importance
▰ Use/Importance:

• Access Control: It prevents unauthorized access to sensitive resources and
actions.

• User Trust: Proper authentication and password management build user
trust in your application.

4. Session Management
▰ Secure session management protects user session tokens during an active

session.

4. Session Management
▰ Use/Importance:

• Prevent Session Hijacking: It prevents attackers from stealing session
tokens and taking over user sessions.

• Data Privacy: Secure session management ensures that user data remains
private.

5. Cryptographic Practices
▰ Access Cryptography in software development involves using algorithms and

cryptographic keys to encrypt and decrypt data.
▰ It's essential for protecting sensitive data like user credentials, personal

information, and financial transactions, both at rest (stored data) and in transit
(data being transmitted).

Cryptographic Practices Importance

▰ Cryptography in software development involves
using algorithms and cryptographic keys to encrypt
and decrypt data to maintain the confidentiality

▰ Use cryptographic hashing for data integrity checks
and password storage. Implement algorithms like
SHA-256 or SHA-3.

Confidentiality Integrity

6. Error Handling and Logging
▰ Proper error handling ensures that errors do not expose sensitive information,

and secure logging records of important security events.

Confidentiality Availability

Prevent Data Leakage: It prevents error messages
from revealing sensitive information.

Ensure Continuous Service: Proper error handling
maintains application uptime by gracefully managing
exceptions, thus preserving the availability of the
software for users.

Confidentiality Availability

Effective Error handling

Effective Logging

Some additional Principles
1. Data Protection
2. Communication Security
3. System Configuration
4. Database Security
5. File Management
6. Memory Management
7. General Coding Practices
8. and more

OWASP
▰ The Open Web Application Security Project (OWASP) Top

10 Web Application Security Vulnerabilities is a list of the
most common and critical security weaknesses in web
applications. The list is updated annually and is based on
the input of security experts from around the world.

1. Cross-site scripting (XSS)

▰ XSS vulnerabilities allow attackers to inject malicious code into an application's
web pages. This can allow the attacker to steal sensitive data, redirect users to
malicious websites, or take control of the user's browser.

Demo

Prevent XSS
1. Data Validation: Input validation to ensure that only properly formatted data is

entered into the system.

2. Output Encoding: When displaying user input or data from untrusted sources,
it's important to encode it to prevent any embedded scripts from executing.

Buffer Overflow

▰ A buffer overflow occurs when the volume of data exceeds
the storage capacity of a memory buffer

▰ Ex.) If a buffer is of size 8and the data stored into the
buffer is 10 there would be a buffer overflow

Preventing Buffer Overflow
• Stack Smashing Tools
• Canary Values
• Using Safe Commands (Specifying Data Lengths)
• Address Randomization

Demo

How to code securely
There are a number of things that developers can do to prevent common
secure coding vulnerabilities. These include:
▰ Input validation: Validate all user input to ensure that it is safe and does

not contain malicious code.
▰ Output encoding: Encode all output to prevent cross-site scripting (XSS)

attacks.
▰ Use strong passwords: Use strong passwords and store them securely.
▰ Testing
▰ More……

Testing Agenda
• Types of Testing
• Code Scanning
• What is Git?
• Git Requests

Types of Testing
• Static Testing – Analysis without running

the code
• Dynamic Testing - Analysis while running

the code with inputs and expecting
resulting outputs

• Goal: Break the Code

Static Testing
• Analyzing source code without executing the program
• Manual Static Testing:

• Inspections
• Walkthroughs
• Technical Reviews

• Automatic Static Testing
• Control Flow Analysis
• Data Flow Analysis
• Failure Detection

• Beneficial because lots of time can be saved if defects
are detected early on rather than during the later testing
process

Examples of Automated
Static Testing
• Veracode

• Standalone Application
• CI/CD Integration

• SonarQube
• Standalone Application
• CI/CD Integration

Dynamic Testing
• Testing code by running the program and providing

inputs to then verify
• Setting up simple test cases that meet basic

requirements
• Fuzzing – Entering in random incorrect data until

something goes wrong
• Re-running test cases over and over to ensure reliability

• May run tests in random orders so tests are not
conditional

• Very beneficial to find defects with quality testing in real-
world environments

Examples of Automated
Dynamic Testing
• Astra PenTest

• Used with testing:
• Web and Mobile Applications, Cloud

Infrastructure, API, and Networks
• Standalone Application and CI/CD integration

• OWASP Zap
• Used with testing:

• Web application security testing, network ports,
and API testing

• Standalone Application and CI/CD integration

What is Git?
Git is a distributed version control system

that tracks changes in any set of computer
files

Used in organizations to have multiple
software engineers be able to work on the
same files

Examples:
GitHub
GitLab
Azure DevOps (Newly Popular)

Version Control
How does it work?

Types of Requests
Pull

The process of receiving any new code changes on a
branch repository

Push
The process of sending new code changes to a branch

repository
Merge

The process of combining one branch with another
Fork

A copy of an existing repository in which the new owner
disconnects the codebase from previous committers

	Secure Coding
	What is secure coding?
	Importance of Secure Coding
	Principles of Secure Coding
	1. Input Validation
	Input Validation Importance
	2. Output Encoding
	Output Encoding Importance:
	3. Authentication
	Authentication Importance
	4. Session Management
	4. Session Management
	5. Cryptographic Practices
	Cryptographic Practices Importance
	6. Error Handling and Logging
	Confidentiality
	Confidentiality
	Slide Number 18
	Some additional Principles
	OWASP
	1. Cross-site scripting (XSS)
	Demo
	Slide Number 23
	Prevent XSS
	Buffer Overflow
	Preventing Buffer Overflow
	Demo
	Slide Number 28
	How to code securely
	Testing Agenda
	Types of Testing
	Static Testing
	Examples of Automated Static Testing
	Slide Number 34
	Dynamic Testing
	Examples of Automated Dynamic Testing
	Slide Number 37
	What is Git?
	Version Control
	Types of Requests

